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INTRODUCTION

Hyperspectral imagery with over two hundred channels provides better target
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detection and identification than broadband imagery, and it allows the flexibility in
choosing several narrow bands for specific targets. However, image analyses for
hyperspectral data require intensive computation due to the huge amounts of the
information content. In addition, spectral bands of hyperspectral data exist high
interband correlations and a large amount of redundaricy. These disadvantages lead
to the needs of efficient methods for information extraction and data compression.

Principal components analysis (PCA) is often applied to determine the
underlying statistical dimensionality of the image data set (Ready and Wintz 1973).
The process has also been regarded as the information compression in which a
smaller number of components could be extracted from the whole data set by
discarding redundant information into higher-order components (Singh and
Harrison 1985). PCA has become a standard tool for the compression and
enhancement for multispectral data (Green et al. 1988).

However, several examples show that PCA does not always produce images
which show steadily decreasing image quality with increasing component number
(Green et al. 1988). Another method, minimum noise fraction transformation
(MNF), which maximizes the signal-to-noise ratio (SNR) represented by each
component, rather than the data variance, could be more effective than PCA to
order the components based on the image quality (Lee et al. 1990). This method
has been tested using 10-band airborne thematic mapper (ATM) simulator data
(Green et al. 1988). It should be further validated using hyperspectral data.

The objective of this study is to investigate if there is substantial improvement
in image enhancement, information extraction and SNR by applying MNF

transformation to hyperspectral imagery.
BACKGROUND

Dimensionality Reduction Techniques

Typically, the dimensionality of multispectral / hyperspectral imagery could be
reduced by applying a linear transformation, such as principal components
transformation or minimum noise fraction transformation. Only significant

components would be retained for further processing (Harsanyi and Chang 1994).
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Principal Components Analysis. It, also referred to as the Hotelling transformation,
the Karhunen-Loéve (K-L) transformation, and the eigenvector transformation in
the remote sensing and pattern recognition literature, is a multivariate statistical
technique for information extraction, SNR improvement » data compression, and
change detection (Singh and Harrison 1985). This technique was first developed by
Hotelling (1933) for his work in educational psychology. The K-L transformation
was introduced to pattern recognition by Watanabe in 1965 and since then research
efforts have developed in two parallel directions. In the statistics, interest has been
in the area of sampling theory and inference procedures (Kendall et al. 1983). In
pattern recognition, most interest has been with feature extraction methods such as
information compressibility, and the relationship with the Fourier transform
(Devijver and Kittler 1982).

Mathematically, if X" =[X,»...» X ]is a N-dimensional random variable with
mean vector M and covariance matrix C, then a new set of variables, say, Y;, Y,,...,
Y,, known as principal components, can be expressed by (Singh and Harrison
1985):

Yj = ale] + a2jX2 + ...+ aann = aJTX
Where T denotes transpose of a matrix and a/'X = [ a,;,..., a,] are the normalized
eigenvectors [ i.e. a/'a; = 1] of the variance-covariance matrix. By denoting the (N x
N) matrix of eigenvectors by A and the [ N x 1] vector of principal components by
Y » then

Y=ATX

The (N x N) covariance matrix of Y » C > is given by:
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Where A, are eigenvalues of matrix C. The matrix is diagonal as the components
have been chosen to be uncorrelated and A, > A,> ... A,

Several characteristics of PCA are of special interest in remote sensing. For
example, the total variance is preserved in the transformation; the mean square
approximation errors were minimized; and it generates uncorrelated coefficients
(Moik 1980). Geometrically, it rotates the highly correlated features to the
orthogonal space so that the maximum amount of variance is accounted for in
decreasing magnitude along the ordered components (5ingh and Harrison 1985).

Principal components can be calculated from either a covariance matrix or a
correlation matrix. The correlation matrix could be derived by dividing the
appropriate standard deviations into the covariance matrix. In the context of remote
sensing, a case can be made for using a standardized or non-standardized matrix.
The derivation of the components from a non-standardized matrix can be justified
because each band would have the same physical units (Singh and Harrison 1985).
PCA using the correlation matrix has been used to detect the land cover change.
The total variance of multi-temporal images could be decomposed into two parts.
These are the substantial sources of variation betweer. the images due to external
conditions, such as atmospheric transmission, angle of sun incidence and
differences between detector calibration procedures of sensors, and the small
variances introduced by the land cover change. One way to minimize the external
variances is to standardize all the data from different bands to a standard deviation

of one so that the land cover change can be better detected (Byrne et al. 1980).

Minimum Noise Fraction Transformation. It, also callec. maximum noise fraction, is
referred to as the noise-adjusted transformation (NAPC). This technique has been
used to determine the inherent dimensionality of image data, to segregate noise in
the data, and to reduce the computational requiremer.ts for subsequent processing
(Boardman and Kruse 1994). It was first defined to investigate the improvement by
employing MNF transformation compared with PCA in airborne thematic mapper
(ATM) ten-band data (Green et al. 1988). MNF transformation could be regarded as
a two cascaded principal components transformation. The first transformation,
based on an estimated noise covariance matrix, decorrelates and rescales the noise

in the data so that the noise has unit variance and no band-to-band correlations.
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The second step is a standard principal components transformation of the
noise-whitened data (ENVI, 1997).

Mathematically, given a multivariate data set of p-bands with gray levels,
Z,(x), ;=1..,p
. where x gives the coordinates of the sample. It can be assumed that
Z(x)=S(x)+N(x)

 where ZT (x) = { Z, (x),.., Z, (x) },and S (x) and N (x) are the uncorrelated
signal and noise components of Z (x). Thus

Cov{Z(x)}=X=2s+ 2n

.where ¥sand Yy are the covariance matrices of S ( x) and N (x) , respectively. The
noise fraction of the i band will be
Var { N,(x)}/Var{Z (x) }

the ratio of the noise variance to the total variance for that band. The maximum

noise fraction transform chooses linear transformations
Y, (x)=a"Z(x),,=1,...,p

such that the noise fraction for Y, (x) is maximum among all linear transformations
orthogonal to Y; (x) » j = 1,...,1 (Green et al. 1988).

It shows that the vectors a, are the left-hand eigenvectors of Y2 !, and that g,
the eigenvalue corresponding to a;, equals the noise fraction in Y; ( x ). Therefore, it
can be seen that g, > 4> ... 2 u,, and so MNF components have the potential to
show steadily increasing image quality. (Green et al. 1988).

The first step in MNF transformation is to calculate the noise covariance

matrix which can be estimated from either the dark reference measurements (dark
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current) or the near-neighbor differences. The former is the signal observed while
the foreoptics shutter of the detector is closed. It represents the detector’s
background data as well as the instrument’s noise (Steirikraus and Hickok 1987). In
the radiometric calibration processing of hyperspectral data, the dark current could
be derived by subtracting each dark current value from the DN values (Vane et al.
1987).

The dark image is not available from most instruments. The alternative is using
the near-neighbor differences, which can be calculated from a procedure known as
minimum/maximum autocorrelation factors (MAF). This procedure assumed that
the signal at any point in the image is strongly correlated with the signal at
neighboring pixels while the noise shows only weak spatial correlations (Lee et al.
1990). The near-neighbor differences could be obtained by differencing adjacent
pixels to the right and above each pixel and averaging the results to derive the noise
value (ENVI 1997).

METHODS

Data Preparation

The study area is located near Heber City, Utah including Wasatch Mountain
National Park, Deer Creek reservoir and Midway towr.. The water body of Deer
Creek reservoir provides a homogeneous spectral reflectance which is required to

estimate the noise statistics in MNF transformation (see Figure 1).
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Figure 1. True-color AVIRIS image of the study area with the red
box indicating the subset image used to estimate the

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data was
adopted for the investigation because it provides the high quality hyperspectral
imagery (i.e., high spectral, spatial resolution and SNR) and meets the requirements
for this study. The AVIRIS imagery of the study area was obtained from the Park City
flight, scene 2, on 5 August 1998. The data range for this image is from Band 1, with
a bandcenter of 369.07 nm- to Band 224, with a bandcenter of 2507.50 nm» and the
spatial solution is 20m. In order to save the computation, the original image size,
614 x 512 pixels, was cut to the current image size, 300 x 300 pixels. A spatial
subset image, 20 x 20 pixels, over the Deer Creek reservoir was defined to estimate

the noise covariance matrix.




170

Image Processing

PCA and MNF transformations were performed using the ENVI 3.0 software.
Both the covariance matrix and the correlation matrix were applied to PCA analysis.
The dark current measurements are not available in the 1998 AVIRIS flight so that
the MAF procedure was conducted to estimate the noise covariance matrix for MNF
transformation.

The statistical results of the transformations were exported from ENVI to a text

file, which was then imported into Microsoft Excel to ca culate the SNR.
RESULTS AND DISCUSSICN

Image Enhancement

By applying PCA with the covariance matrix to AVIRIS data, it can be seen that
the first few principal components behave much as expected, such as PC1 to PC10,
and there is definite trend to increasing noise with increasing component number
(see Figure 2a). However, PC21 is quite an acceptable :mage with less noise than
PC10, PC14 and PC15. The similar result occurred in PCA with the correlation
matrix. For example, the image quality of PC 24, PC 25, and PC26 is much better
than that of PC 20, which is a noise-dominated image (see Figure 2b). These
results reaffirm that PCA could not reliably separate signal and noise components of
multispectral image data, especially among aircraft scanner data (Green et al. 1988).
In contrast, MNF transformation successfully orders components in terms of image
quality. MNF component images show steadily decreasing image quality with
increasing component number (see Figure 2c).

Since each band contributes equal variance s the image quality of the
component images using PCA with the correlation matrix becomes much smoother
than those of using PCA with the covariance matrix and MNF transformation. The
component images with high orders, such as PC100, PC150, PC200, and PC224,
are supposed to be dominated by noise. However, the image contrast of those images
is not quite low (see Figure 2b). For example, the shorelinz of the reservoir as well as
some crop fields can be easily identified in those higher-order images. This result
demonstrates where the main difference lies between using the covariance matrix

and the correlation matrix.
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Figure 2. (a) Principal component images using covariance matrix
(b) Principal component images using correlation matrix
(c) MNF component images

Information Extraction

The magnitude of eigenvalues shows that by using PCA with the covariance
matrix, 84 percent of the total variance is represented in the first principal
component (PC1) , and 99.3 percent of the total covariance can be explained by the
first three principal components (see Figure 3). Comparatively, using PCA with the
correlation matrix or MNF transformation, the cunulative percent does not
increase as rapidly. To compare the eigenvalues of these three methods in detail, the
screen test was used to identify the optimal number of components that can be
extracted, and the shape of the resulting curve was applied to evaluate the cutoff

point. Using PCA with the covariance matrix, the cutof! point is located at PC4 (see
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Figure 4a); using PCA with the correlation matrix, at PC9 (see Figure 4b); using
MNFE, at PC7 (see Figure 4c). Visual inspection of the information content in
principal component images reveals that more components can be extracted. It
should be PClto PC8 for the covariance matrix, PC1 to PC50 for the correlation
matrix, and PC1 to PC12 for MNF transformation (see Figure 2).

Eigenvectors, also known as the factor loadings, are the correlation of each
band and principal components. Eigenvectors indicate the degree of
correspondence between the band and the principal component, with higher
eigenvectors making the band representative of the principal component. There is
significant difference between PCA and MNF where the latter demonstrates a better
basis for carrying out principal components (see Figure 5). The major eigenvector
(PC1) of PCA is heavily dominated by the high negative values from the red and
near infrared bands (see Figure 5a). However, the PC1 of MNF is much more
uniformly weighted across all bands. Similarly, the rest principal components of
MNF are more uniformly weighted across all bands than those of PCA (see Figure
5b » 5¢). Visual inspection of the PC1 images shows that the PC1 of MNF has better
contrast than those of PCA.

@ COVARIANCE
MATRIX
100 — o CORRELATION
%0 MATRIX
OMNF
80
70
°~\°« 60
)]
2 so
S
& 40
>
30
20
10

ool T e
1 2 3 4 5

Principal Components

Figure 3. The Magnitude of



174
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SNR Improvement
The SNR improvement (ASNR) achieved by the PCA can be calculated from
the eigenvalues of the original spectral band variances (Ready and Wintz 1973).

2
ASNR = A,/ 6,
2 2 2 2 2
where 8, = max [8,, 8,9, Oy3,..-... ,Ounl

In PCA using the covariance matrix,
ASNR = log;0(53398804) — 1og;0(995305) = 1.73 dB

In PCA using the correlation matrix,
ASNR = log,,(130) —log;o(1) = 2.12 dB

In MNF transformation,
ASNR = log,,(850378.75) — log;o(1) = 5.93 dB

A 0.39 dB difference in SNR improvement over the original SNR is therefore
realized with eigenvector computed from PCA with the correlation matrix rather
than thg covariance matrix. Furthermore, a more significant SNR improvement was
achieved using MNF transformation, which is 4.2 dB higher than PCA using the

covariance matrix and 3.81 dB higher than PCA using the correlation matrix.
CONCLUSION

The difference among using PCA with the covariar.ce matrix, PCA with the
correlation matrix and MNF transformation to reduce the dimensionality of
hyperspectral data was evaluated statistically in this study. The results reaffirm that
MNF transformation is more reliable than PCA when the image quality is the
primary concern (Green et al. 1998; Lee et al. 1990). (

By applying PCA and MNF transformation to AVIRIS data, the resulting

principal component images illustrate that either using the covariance matrix or the



177

correlation matrix, PCA could not reliably separate signal and noise components of
the AVIRIS data. An improvement in image enhancement is achieved by employing
MNF transformation, which is capable of steadily decreasing image quality with
increasing component number.

The eigenvalues and the principal component images indicate that only 8
components are required for PCA with the covariance matrix, approximately 50
components for PCA with the correlation matrix, and 12 components for MNF
transformation. The most efficient compression is using PCA along with the
covariance matrix in that 99.3 percent of the total covariance can be explained by
the first three principal components. However, this high concentration was partially
resulting from the noise variance.

In comparing SNR, MNF transformation enhances SNR better than PCA. The
difference between employing the correlation matrix or the covariance matrix for
PCA is not significant in this case.

It should be noted that both PCA and MNF transformation are exploratory
techniques of constructing new artificial bands, which do not necessarily have any
physical meaning or significance. Therefore, the performance of data compression
and dimensionality identification cannot be directly assessed by the eigenvalues, but
by case studies. The comparison of these techniques needs to be expanded by
applying them to extract the information of specific targets in hyperspectral data.

Another application not covered in this study is the investigation of factor
loadings for the principal components in hyperspectrall data. The results will be

useful for the selection of optimal bands to detect the targets of interest.
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